Exercice 1 (10.1.4)

Le pH d'une solution d'acide benzoïque (C₆H₅COOH) 0,02 M est de 2,96. Calculer le pK_a de cet acide.

Exercice 2

- a) Calculer le pH d'une solution aqueuse de NH₃ 0,1 M.
- b) On prend 1 L de cette solution et on y ajoute 1 L de H₂O. Quel sera le pH de la nouvelle solution?

$$pKa (NH_4^+) = 9.25$$

Exercice 3 (10.2.6)

Calculer la concentration initiale d'une solution aqueuse de CH₃NH₃Cl dont le pH = 5,8.

$$pK_a (CH_3NH_3^+) = 10,66$$

Exercice 4 (10.2.9)

On considère 100 mL d'une solution aqueuse de CH₃COONa 0,2 mol L⁻¹.

- a) Quel est le pH de cette solution?
- b) Déterminer le pH de la solution obtenue en dissolvant 0,1 g d'hydroxyde de sodium, NaOH(s), dans la solution initiale.
- c) Quel sera le pH de la solution lorsqu'on ajoute 1 litre d'eau à la solution ci-dessus (b) ?

pKa (
$$CH_3COOH$$
) = 4.75

Exercice 5 (10 .2.5)

On donne le tableau suivant concernant des acides et des bases selon Broensted:

	Couple 1	Couple 2	Couple 3	Couple 4
Forme acide	HCO ₃ ⁻	NH4 ⁺		
Forme basique			HSO ₃ ⁻	HS ⁻
K _a à 25°C	$4,7 \cdot 10^{-11}$		1,6·10 ⁻²	
pK _a à 25°C		9,25		7,00

- a) Compléter ce tableau.
- b) Pour chaque couple, déterminer l'espèce prédominante à pH=3, pH=7 et pH=11.

Exercice 6 (10.2.7)

On dissout 21 g d'acide benzoïque, C₆H₅COOH, et 18 g de benzoate de sodium, C₆H₅COONa, dans de l'eau pour préparer 500 mL de solution tampon.

- a) Quel est le pH de cette solution?
 - b) Quel est le pH de la solution obtenue par adjonction de 50 mL de NaOH 0,15 M à 50 mL de cette solution tampon ?
 - c) Quel est le pH de la solution obtenue en ajoutant 0,05 mol de HCl gazeux à 100 mL de cette solution tampon ?

pKa $(C_6H_5COOH) = 4.2$

Exercice 7 (10.2.11)

On dissout 10,8 g du chlorure d'ammonium, NH₄Cl, et 0,15 mol d'ammoniac, NH₃, dans de l'eau pour préparer 500 mL de solution tampon.

- a) Quel est le pH de cette solution?
- b) Quel est le pH de la solution obtenue par adjonction de 25 mL de NaOH 0,2 M à 75 mL de cette solution tampon ?
- c) Quel est le pH de la solution obtenue en ajoutant 100 mL HCl 0,1 M à 100 mL de cette solution tampon ?

Données : $pK_a(NH_4^+) = 9.25$

Exercice 8

Calculer le pH de la solution obtenue en ajoutant 100 mL d'une solution aqueuse de NH₄Cl (0.2mol/L) et 50 mL d'une solution aqueuse de NaOH (0.2 mol/L) à 25°C.

Données : $pK_a(NH_4^+) = 9.25$

Exercice 9

Calculer le pH de la solution obtenue en ajoutant 50 mL d'une solution aqueuse de NaOH (0.3 mol/L) à 150 mL d'une solution aqueuse de NH₄Cl (0.1 mol/L) à 25°C. p K_a (NH₄+) = 9.25

Exercice 10

Calculer la masse minimale (en g) de CH₃COOH et CH₃COONa à ajouter à 2 L d'eau afin que le pH de la solution, à 25°C, soit initialement égal 3.75 et qu'il reste inférieur à 4.75 après l'addition de 10 ml NaOH (2 mol/L).

Données : $pK_a (CH_3COOH) = 4.75$